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Abstract 

Convex polyhedra  with regular faces were used for 
developing the crystal-chemical  model  of  atomic 
interactions. Some examples  of inorganic crystal 
structures with coordinat ion polyhedra  belonging to 
convex polyhedra  with regular faces are considered.  
Only four polyhedra  - tetrahedron,  octahedron,  tri- 
gonal b ipyramid  and cube (without due regard for 
d isp lacement  of  some atomic groups as a whole) - are 
shown to be stable at any value of  the atomic interac- 
tion potential.  

Introduction 

It was shown in previous papers of  this series 
(Aslanov, 1988) that atoms in crystals of  a cubic 
system are placed at vertices of Platonic regular solids 
(PRS) and Arch imedean  semiregular  solids (ASRS); 
however, many  crystals of  hexagonal  systems contain 
the an t icuboctahedron which is not included in PRS 
or ASRS. The ThaP4 structure is built  of  eight-vertex 
dodecahedra .  This po lyhedron  does not belong to 
PRS or ASRS. There exist many  structures containing 
coordinat ion polyhedra  with odd numbers  of  ver- 
tices - 5, 7, 9, 11 and so on. All these examples  deman-  
ded the deve lopment  of  a crystal-chemical model  of  
atomic interactions (CCMAI)  described earlier 
(Aslanov, 1988). 

Zalgaller's convex polyhedra with regular faces 

PRS's and ASRS's  possess three important  properties: 
(i) all their vertices are placed on a sphere;  (ii) all 
their faces are regular polygons (triangles, squares 
and so on), so that all polyhedra  edges have equal 
lengths; (iii) all polyhedral  angles are congruent  or 
symmetric.  In accordance with Zalgaller 's  (1969) 
work, the second condi t ion alone gives 92 convex 
polyhedra  other than PRS's and ASRS's.  All of  them 
are listed in the book by Zalgal ler  (1969). The most 
widespread of  Zalgal ler 's  polyhedra  (ZP) is a 
t r iangular  or thobicupola  or an ant icuboctahedron 
(Fig. lg )  which is one of  the ZP's  inscribed into the 
sphere in such manne r  than the center of  this sphere 
coincides with the ZP's center of  gravity. Among all 
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the ZP's  seven more polyhedra* have their  centers at 
points coinciding with the centres of  describing 

* These polyhedra are numbered 34, 37, 72-75, 80 (Zalgaller, 
1969). Here and below, the numbering of polyhedra taken from 
Zalgaller is sometimes used for brevity instead of the names of the 
polyhedra. 

(a) 

(e) 

(b) (c) (d) 

(f) (g) (h) 

(i) (j) (k) (/) 

(m) (n) (ol (p) 

Fig. 1. Zalgailer's polyhedra discussed in this paper. After the 
polyhedron name Zalgaller's (1969) number of this polyhedron 
is indicated. (a) Gyroelongated square pyramid (capped 
tetragonal antiprism), no. 10; (b) trigonal bipyramid, no. 12; (c) 
elongated triangular bipyramid (3,3-bicapped trigonai prism), 
no. 14; (d) elongated square bipyramid, no. 15; (e) gyro- 
elongated square bipyramid (4,4-bicapped tetragonal anti- 
prism), no. 17; (f) gyrobifastigium, no. 26; (g) triangular 
orthobicupola (anticuboctahedron), no. 27; (h) elongated 
triangular orthobicupola, no. 35; (i) augmented triangular prism 
(4-capped trigonal prism), no. 49; (j) biaugmented triangular 
prism (4,4-bicapped trigonal prism), no. 50; (k) triaugmented 
triangular prism (4,4,4-tricapped trigonal prism), no. 51; (1) 
tridiminished icosahedron, no. 63; (m) snub disphenoid (eight- 
vertex dodecahedron), no. 84; (n) snub square antiprism, no. 
85; (o) sphenocorona, no. 86; (p) hebesphenomegacorona, 
no. 89. 
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spheres, but these polyhedra have no significance for 
crystal chemistry and are disregarded here. The wide 
spread of the anticuboctahedron in crystal structures 
is presumably due to two reasons: (i) the first and 
second conditions of the three mentioned above for 
PRS's and ASRS's are met; (ii) because of the specific 
space distribution of the 12 anticuboctahedron ver- 
tices the close packing of atoms is implemented. The 
other ZP's, inscribed into a sphere in such a way that 
the center of the sphere coincides with the polyhe- 
dron's center of gravity, have the following numbers 
of vertices: 24 [no. 37 - the Ashkinusean polyhedron 
(Ashkinuze, 1957)], 30 (no. 34), 60 and more (nos. 
72-75, 80). Some crystal structures are considered 
below as examples indicative of the important ,role 
of ZP's for crystal-chemical analysis. As a rule, PRS's, 
ASRS's and ZP's are distorted in real crystal struc- 
tures, say tetragonal (pentagonal and so on) faces are 
bent along diagonals. If such a bend exists in our 
examples, but is omitted from the figure to make the 
polyhedron clear, the value of the dihedral angle 
(d.a.) is put in brackets after the name of the polyhe- 
dron in the text. Dihedral angles less than 2 ° were 
ignored. Other distortions are visually demonstrated 
in the figures; that is why these facts are not pointed 
out in the text. 

The crystal data for the compounds used as 
examples below are taken from Wyckoff's (1964) 
handbook, except for a few points specifically refer- 
enced. 

Discussion 

Let us begin with the structure LaF3. In accordance 
with widespread opinion, the coordination number 
(CN) of the lanthanum atom is 11 and the coordina- 
tion polyhedron (CP) is a trigonal prism with caps 
above all its faces. There is no such polyhedron among 
the ZP's, but within the CCMAI framework this poly- 
hedron should be considered as a sum of two coordi- 
nation spheres (Fig. 2): in the first coordination 
sphere the fluorine atoms comprise a trigonal 
bipyramid (TB) with La-F distances of 2.36-2.43 A, 

trigonal prism (TP) with La-F distances 2-73 ~ x 6. 
The CP's in the first and second coordination spheres 
are dual with respect to each other. TB is included 
in the set of ZP's, TP is one of the ASRS's. The third 
coordination sphere of the complex contains 12 lan- 
thanum atoms distributed at the anticuboctahedron 
(ZP no. 27) vertices at distances 4.20-4.40 fk from 
the center of the complex (d.a. 3°). Any of the 
peripheral lanthanum atoms has exactly the same 
three coordination spheres. As a result, translational 
symmetry arises. This approach eliminates the prob- 
lems in descriptions of the LaF3 structure, which are 
inevitable when the distribution of fluorine atoms in 
the close packing of lanthanum atoms is considered. 

One of the most widespread polyhedra is the tri- 
augmented triangular prism (ZP no. 51, Fig. 1 k) or, 
in other words, the 4,4,4-tricapped trigonal prism 
(4,4,4-TTP). For instance, in the PbCI2 structure (Fig. 
3) the center of a complex coincides with the lead 
atom, and the first coordination sphere - 4,4,4-TTP- 
is formed by nine chlorine atoms. The interatomic 
Pb-CI distances are within the range of 2.85-3-63 ~,. 
The second coordination sphere consists of 12 lead 
atoms placed at the anticuboctahedron vertices at 
distances of 4.55-5.05 A from the central lead atom 
(d.a. 4°). The 4,4,4-TTP in the first coordination 
sphere was found to be around yttrium atoms in the 
YF 3 and Y(OH)3 structures, around the uranium atom 
in UCI3, around the boron atom in Re3B, around the 
phosphorus atom in Ni~P, around the P(1) atom in 
Fe2P and around the S(2) atom in CuS. This CP exists 
in some structures in the second coordination sphere: 
in the olivine Mg2SiO4 structure (Birlie, Gibbs, Moore 
& Smith, 1968) the silicon atom is surrounded by 
oxygen atoms at the tetrahedron vertices in the first 
coordination sphere and by magnesium atoms at the 
4,4,4-TTP vertices in the second coordination sphere. 

Another polyhedron, rather typical of crystal struc- 
tures, is the snub disphenoid or eight-vertex 
dodecahedron (ZP no. 84, Fig. 1 m). For instance, the 
ThCI4 structure (Fig. 4) consists of complexes with 

but the second coordination sphere represents 

(a) (b) 

Fig. 2. The polyhedral structure of complexes in LaF 3 crystals. 
The center is occupied by an La atom. The atoms at polyhedra 
vertices are: (a) and (b) F; (c) La. 

a 

(c) (a) (b) 

Fig. 3. The polyhedral structure of complexes in PbCi 2 crystals. 
The center is occupied by a Pb atom. The atoms at polyhedra 
vertices are: (a) CI; (b) Pb. 
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the thorium atom at the center; eight chlorine atoms 
are in the first coordination sphere at eight-vertex 
dodecahedra vertices at Th-CI distances of 2.46 A x 
4, 3.11 A x4; the four thorium atoms comprise a 
tetrahedron in the second coordination sphere with 
distances 4.64 A x 4 from the center of the complex. 
This example shows that the eight-vertex dodecahe- 
dron has two groups of distances between the vertices 
and the polyhedron center: the short distances belong 
to vertices placed at the point of intersection of five 
edges, the long ones correspond to vertices where 
four edges cross each other. Thus, the eight-vertex 
dodecahedron cannot be inscribed into a sphere 
without distortions and, therefore, one of the condi- 
tions for potential-energy minimum mentioned above 
is not met. The potential energy of such a complex 
is not minimal despite the fact that all faces of this 
polyhedron are trianglar and all edges have equal 
lengths. Very often the crystal structures contain 
eight-vertex dodecahedra which have nearly equal 
distances between vertices and the center of a polyhe- 
dron, but different lengths of edges, i.e. the polyhe- 
dron topology (the numbers of vertices of two above- 
mentioned types and their mutual displacement) is 
preserved, but the polyhedron has distortions. Such 
eight-vertex dodecahedra were found in the first 
coordination spheres of a calcium atom in the sheelite 
structure (CaWO4) and of a zirconium atom in the 
zircon structure (ZrSiO4), as well as in the second 
coordination sphere of a titanium atom in the anatase 
(TiO2) structure. 

In the rutile (TiO2) structure the titanium atom is 
placed at the center of a complex consisting of two 
coordination spheres (Fig. 5). The first coordination 
sphere contains the oxygen atoms only, which are at 
the octahedron vertices (the Ti-O distances are 
2.13 A x 4, 2-16 A × 2); the second has ten titanium 
atoms placed at the elongated tetragonal bipyramid, 
vertices (ZP no. 15, Fig. ld)  at distances 3.55/~ × 2, 
3 . 5 6 A × 8  from the center of the complex. The 
elongated tetragonal bipyramid is the name of the 
ideal ZP, but this polyhedron is distorted in the rutile 
structure; it is compressed along the fourfold axis. 
So the rutile structure differs from the anatase struc- 
ture in the second coordination sphere. The elongated 

(a) (b) 

Fig. 4. The polyhedral structure of complexes in ThCl4 crystals. 
The center is occupied by a Th atom. The atoms at polyhedra 
vertices are: (a) C1; (b) Th. 

tetragonal bipyramids are found in the second coordi- 
nation spheres of a tellurium atom in the tellurium 
dioxide structure, of an Ir(1) atom in the IrSe2 struc- 
ture, of a boron atom in the Re3B structure, of an 
iron atom in the marcasite structure, of zirconium 
and silicon atoms in the zircon structure. 

The elongated trigonal bipyramid (ZP no. 14, Fig. 
l c) is a quite ordinary polyhedron in crystal struc- 
tures. For instance, in the UC13 structure (Fig. 6) the 
uranium atom is at the center of the complex. Its first 
coordination sphere consists of nine chlorine atoms 
distributed at 4,4,4-TTP vertices, as mentioned above. 
The second coordination sphere is formed by eight 
uranium atoms fixed at vertices of the elongated 
trigonal bipyramid, i.e. the 3,3-bicapped trigonal 
prism (3,3-BTP) at distances 4.31 A ×2 (caps) and 
4.80 x 6 from the center of the complex. The same 
polyhedra were discovered in the second coordina- 
tion spheres of Ir(2) in the IrSe2 structure, of an 
aluminium atom in the A1OOH structure, and of O(1) 
in the Pb304 structure. 

The Pb304 structure is formed by two mutually 
correlated complexes (Fig. 7). The Pb(1) atom is at 
the center of the first complex. Its first coordination 
sphere is an octahedron with oxygen atoms at the 

(a) (b) 

Fig. 5. The polyhedral structure of complexes in ruffle (TiO2) 
crystals. The center is occupied by a Ti atom. The atoms at 
polyhedra vertices are: (a) oxygen; (b) Ti. 

(a) (b) 

Fig. 6. The polyhedral structure of complexes in UC% crystals. 
The center is occupied by a U atom. The atoms at polyhedra 
vertices are: (a) CI; (b) U. 
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vertices at distances 2 . 1 4 A x 2  [for 0(2) ]  and 
2.17 A x 4  [for O(1)] from the central lead atom. The 
second coordination sphere contains ten lead atoms 
arranged as a gyroelongated square bipyramid (ZP 
no. 17, Fig. le) ,  which is known in crystal chemistry 
as the 4,4-bicapped tetragonal antiprism (4,4-BTA). 
The distances from the lead atoms to the center of 
the complex are 3 . 2 7 ~ x 2  (caps) for Pb(1) and 
3.71 ,~ x 8 for Pb(2). The third coordination sphere 
consists of six 0(2)  atoms distributed at the octahe- 
dron vertices and removed at 3.91 A x 4, 4.08 A x 2 
from the center. The other atoms are placed at a 
distance of no less than 5.07 A from the center of the 
complex. 

The third coordination sphere in the previous com- 
plex was taken into consideration because complexes 
of the second type are centered on 0(2)  atoms. The 
0(2)  atom is surrounded by three lead atoms - Pb(1) 
2.14, Pb(2) 2 . 2 5 A × 2 .  The second coordination 
sphere has eight oxygen atoms at 3,3-BTP vertices 
(ZP no. 14, Fig. lc). The distances of these atoms 
from the center of the complex are 3 . 0 4 A × 4 ,  
3 . 1 2 A x 2  for O(1) and 3 . 2 7 A x 2  for 0(2)  (caps). 
The third coordination sphere is a trigonal bipyramid 
(ZP no. 12) with five lead atoms at vertices placed at 
the following distances from the center of the second- 
type complex: 3 . 6 3 , ~ x 2  for Pb(2), 3 . 9 1 , ~ x 2  
(apical) and 4.08 A for Pb(1). The next closest atoms 
to the center of the complex are at a distance of 
4-54 A. 

In the Pb304 structure the atoms of the last coordi- 
nation sphere of the second type of complex are the 
central atoms of the first type of complex and vice 
versa, which is quite an ordinary phenomenon in 
crystals of various substances. The Pb(2) atoms and 
O(1) do not form complexes and play an auxiliary 
role in the structure. 

Ca) 

(d) 

Fig. 7. The polyhedral structure of complexes in Pb304 crystals. 
The first complex has a Pb atom at the center; the atoms at 
vertices are: (a) oxygen, (b) Pb; (c) oxygen. The second complex 
has an oxygen atom at the center; the atoms at the vertices are: 
(d) Pb; (e) oxygen; (f) Pb. 

Some structures contain a coordination polyhedron 
as a gyrobifastigium (ZP no. 26, Fig. l f ) .  For example, 
in the NbP structure (Fig. 8) both niobium and phos- 
phorus atoms contain this polyhedron in the first 
coordination spheres with Nb-P  distances of 3.29 ,~ x 
8. The second coordination sphere of a niobium 
(phosphorus) atom consists of niobium (phosphorus) 
atoms placed at vertices of the eight-vertex dodeca- 
hedra (ZP no. 84), distorted in such a way that this 
polyhedron could be inscribed into the sphere: the 
distances of the vertices of this l~olyhedron from the 
center of the complex are 3.32 A x 8. The gyrobifas- 
tigium was found in the second coordination sphere 
of the tetrahedrai Ni(1) cluster in the Ni3P structure 
(the nickel atoms are at the vertices of this poly- 
hedron). 

The Cu3As structure is remarkable because of the 
existence of different ZPs in it. It is worth mentioning 
that the Cu3As compound is intermetallic by charac- 
ter, and its structure has some peculiarities; e.g. the 
copper atom can be coordinated by another copper 
atoms. In the Cu3As structure (Fig. 9) three types of 
complexes can be singled out. In the first type of 
complex nine copper atoms form around an arsenic 
atom the rare CP the so-called tridiminished icosa- 
hedron (ZP no. 63, Fig. l/, d.a. 12°). The As-Cu 
distances lie inside the 3.39-3.63 ,~ interval. This 
polyhedron is slightly twisted around the threefold 
axis. The two other complexes have clusters at their 
centers. One of these clusters has four copper atoms 
at vertices of the distorted tetrahedron at distances 
of 2.11 ,~ from the center of the cluster. The first 
coordination sphere is the gyrobifastigium (ZP no. 
26, d.a. 8 °) consisting of four arsenic atoms (2.60 ,~ 
from the center of the cluster) and four copper atoms 
in the equatorial plane (2.85/~ from the center of the 
cluster). In the other cluster complex four copper 
atoms form a tetrahedron (1.54 A from the center of 
the cluster), and eight arsenic atoms are distributed 
at the eight-vertex dodecahedron vertices (ZP no. 84) 
with distances 2.85,~ x 4 (vertices with five edges) and 
3.94 ]~ x 4 from the center of the cluster. And, finally, 
the eight copper atoms are grouped in the distorted 

(b) c) 

(e) (ft 

(a) (b) 

Fig. 8. The polyhedral structure of complexes in NbP crystals. The 
center is occupied by an Nb atom. The atoms at polyhedra 
vertices are: (a) P; (b) Nb. 
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gyrobifastigium (ZP no. 26, d.a. 15°). The distances 
from the center of the cluster are 3-34/~ x 4  and 
3.94 A x 4 (the equatorial plane). The specific feature 
of the latter complex is the fact that half of the atoms 
in the first coordination sphere lie farther (0.57 A) 
from the center of the cluster than half of the atoms 
in the second coordination sphere, in spite of the fact 
that, on average, the distances from the center of the 
cluster to atoms differ noticeably in the first and 
second coordination spheres. This is one more 
peculiarity of intermetallic structures. 

Quite a few structures have as CP a gyroelongated 
square pyramid (ZP no. 10, fig. l a )  or, in other words, 
the four-capped tetragonal antiprism (4-CTA). For 
instance, the lead atom in the PbFCI structure (Fig. 
10) has this particular polyhedron in the first coordi- 
nation sphere. The only square face is formed by 
fluorine atoms; the other vertices are filled with 
chlorine atoms. The Pb-F  distances are 2-51 A x4,  

(a) (b) (c) 

+ I 

(a) (e) ( f )  

Fig. 9. The polyhedral structure of complexes in Cu3As crystals. 
The first complex has an As atom at the center; the atoms at 
vertices (a) are Cu. The second complex has a cluster (b) with 
Cu atoms at the center; the atoms at the vertices (c) are four As 
atoms (black circles) and four Cu atoms. The third complex has 
a cluster (d) with Cu atoms; the atoms at the vertices are: (e) 
As; ( f )  Cu. 

(a) (b) 

Fig. 10. The polyhedral structure of complexes in PbFCI crystals. 
The center is occupied by a Pb atom. The atoms at polyhedra 
vertices are: (a) F (black circles) and CI; (b) Pb. 

the Pb-CI ones are 3 . 1 0 A x 4 ,  3 .25A (a cap). The 
second coordination sphere consists of 12 lead atoms. 
Eight of these atoms are nearly at the same distance 
from the center of the complex: 4.10 A x 4, 4.11 A x 4, 
but the other four atoms are placed much farther, at 
5.22/~ x 4. This deformation of the cuboctahedron is 
predetermined by the first coordination sphere which 
is responsible for the stratified character of the 
structure. 

The Ni12P5 structure (Rundqvist & Larsson, 1959) 
consists of two types of correlated complexes (Fig. 
11). Both complexes have phosphorus atoms at the 
centers. In the first type of complex the center 
coincides with a P(1) atom. The CP of this atom 
consists of 10 nickel atoms distributed at vertices of 
the sphenocorona (ZP no. 86, Fig. lo).  The P(1)-Ni 
distances are 2.21-2.60 A. The second coordination 
sphere is a cuboctahedron (d.a. 6°). It has nine P(1) 
atoms and three P(2) atoms situated at 3.63-3.93 and 
3.73-3.96 A from the center of the complex, respec- 
tively. The center of the second type of complex is 
occupied by the P(2) atom. Its first coordination 
sphere is a slightly flattened cube with Ni(1) atoms 
at the vertices (the distances from the center are 
2.25/~,x8).  The second coordination sphere is a 
cuboctahedron (d.a.f. 4 °) with the P(1) atoms at the 
vertices, which are 3-37 ~ × 8 and 3-96 ~ x 4 from the 
center of the complex. 

According to the description of this structure 
(Kripyakevich, 1977), the CP's of nickel atoms are 
defined as unusual ones. Presumably this is because 
of the fact that the Ni~2P5 structure is formed by 
complexes with phosphorus atoms at their centers, 
but the nickel atoms are influenced by phosphorus 
ones. The Ni12P5 structure demonstrates the 
possibilities of CCMAI for correct description and 
classification of structures. 

This idea can be confirmed by another example. 
Wyckoff (1964) pointed out that all three independent 
nickel atoms in the Ni3P structure (Fig. 12) have 
different coordinations and the distances between the 
central Ni atom and adjacent atoms grow so gradually 
that there is no possibility of determining CN's  
without knowing about the CP. The CCMAI has 
shown that the N3P structure consists of three types 
of complexes and none of them has a nickel atom at 

(a) (b) (c) (d) 

Fig. 11. The polyhedral structure of complexes in Ni~2P 5 crystals. 
The first complex has a P(1) atom at the center; the atoms at 
the vertices are (a) Ni; (b) P. The second complex has a P(2) 
atom at the center; the atoms at the vertices are (e) Ni; (d) P. 
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the center. The complexes of the first type form chains 
of  tetrahedral  clusters (Figs. 12b, d). The centers of  
clusters have two independent  positions in the struc- 
ture. These two positions are ha l f  of  a e t ranslat ion 
apart. The distances of  the centers of  the clusters from 
Ni(2) atoms at the vertices are 1.59 and 1-73 ,~. The 
coordinat ion spheres of  these two clusters are 
tetrahedra (Figs. 12c, e) with phosphorus  atoms at the 
vertices (the distances from the centers of  the clusters 
are 2-29 and 2.21 A, respectively). The nickel tetra- 
hedra are dual  with respect to phosphorus  ones. The 
nickel te trahedra have common edges jo in ing  them 
in chains running along the c axis. 

The complex of  the second type has a phosphorus  
atom at the center and the only coordinat ion sphere 
has a nickel atom at 4,4,4-TTP vertices (ZP no. 51, 
Fig. 12a). The P-Ni  distances are 2-21-2.34 A for 
three Ni(3) atoms, 2-22 and 2.29/~ for two Ni(1) 
atoms, and 2.29-2.34 A for four Ni(2) atoms. The 
complex of  the third type consists of  a tetrahedral  
cluster with Ni(1) atoms at the vertices [the distances 
from the center of  the cluster to Ni(1) atoms are 
1.61 A x 4] and three coordinat ion spheres. The cen- 
ter of  this cluster coincides with the structure origin. 
The first coordinat ion sphere is a tetrahedron with 
Ni(3) atoms at the vertices (the distances from the 
center of  the cluster are 2.71 A x4) .  The second 
coordinat ion sphere has eight nickel atoms dis- 
tributed at the vertices of  a distorted gyrobifast igium 
(ZP no. 26). The distances from the center of  the 
cluster are 3.28 A x 4 for Ni(2) (the equatorial  plane) 
and 3 - 5 5 A x 4  for Ni(1). The third coordinat ion 
sphere contains eight phosphorus  atoms at the ver- 
tices of a slightly distorted cube (the distances from 
the center of  the cluster are 3.35 A x 4 and 3.46 A x 4). 

One more ZP was found in the CdNi  structure 
(Critchley & Jeffery, 1965) which possesses com- 
plexes of three types (Fig. 13). The center of  the first 

(a) (b) (c) (d) (el 

(f) (g) (h) (i) 

Fig. 12. The polyhedral structure of complexes in Ni3P crystals: 
(a) CP of the phosphorus atom with Ni atoms at the vertices 
(complex II); (b), (d) the central clusters with Ni atoms (com- 
plex I); (c) the first coordination spheres with P atoms (complex 
I); (f) the central cluster with Ni atoms and its three coordina- 
tion spheres: (g) Ni; (h) Ni; (i) P (complex III). 

type of complex is placed at a cadmium atom, which 
is surrounded by 14 nickel and cadmium atoms at 
the vertices of a hebesphenomegacorona  (ZP no. 89, 
Fig. lp) .  The distances from the center of  the complex  
to atoms of  the first coordinat ion sjghere are 2.77- 
2.85 A for four Ni(1) atoms, 2.86 A for two Ni(2) 
atoms and 2 .97-3.17/~ for eight cadmium atoms. The 
center of  the second type of complex is occupied by 
an Ni(1) atom. The only coordinat ion sphere in this 
complex is an icosahedron with distances from the 
center of  the complex of  2 . 4 4 A x 3  for Ni(2), 
2.54/~,×3 for Ni(1), 2 . 7 7 A x 3  and 2 . 8 5 A x 3  for 
cadmium atoms. The third type of complex has an 
Ni(2) atom at its center and an icosahedral  coordina- 
tion sphere with distances from the center of  the 
complex of  2 -44A for N i ( l )  atoms and 2 . 8 6 A x 6  
for cadmium atoms. 

The AgsCa3 structure (Calvert & Rand,  1964) 
demonstrates one more ZP, i.e. the snub square anti- 
prism (ZP no. 85, Fig. In) ,  which is the CP of a 
calcium atom. The Ag8Ca3 structure (Fig. 14) is 
arranged as follows. The octahedral  cluster consisting 
of six calcium atoms (all the distances from the center 
of  the cluster to calcium atoms are 2.50 A) is placed 
at the center of  the complex. The first coordinat ion 
sphere with 4.25 A radius has Ag(1) atomg at the 

(a) (b) Cc} 

Fig. 13. The polyhedral structure of three complexes in CdNi 
crystals with (a) Cd, (b) Ni(1), (c) Ni(2) atoms at the centers, 
respectively, and both Ni and Cd atoms at the vertices. 

(a) (b) (c) (d) 

(e) (f) (g) 

Fig. 14. The polyhedral structure of complexes in AgsCa 3 crystals. 
The center is occupied by cluster (a) with Ca atoms. The atoms 
at polyhedra vertices are: (b) Ag(1); (c) Ag(2); (d) Ag(2); (e) 
Ag(2); (f) Ca; (g) CP of Ca atom. 
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vertices of a cube which is a dual polyhedron with 
respect to the central cluster. The second coordination 
sphere with 4.81 A radius is formed by Ag(2) atoms 
distributed at cuboctahedron vertices. The third 
coordination sphere with 5.34/~, radius is a distorted 
rhombicuboctahedron with Ag(2) atoms at the ver- 
tices. The fourth coordination sphere with 7.25 ]k 
radius has 24 Ag(2) atoms at the vertices of a trun- 
cated octahedron. The fifth coordination sphere with 
7.34 A radius is a truncated cube with calcium atoms 
at the vertices. Each triangular face of the last polyhe- 
dron belongs to the central octahedral cluster, and 
this is a new starting point for development of the 
structure. 

Some very interesting ZP's (no. 35, Fig. lh)  exist 
in the MoS2 structure (Fig. 15). This is an elongated 
triangular orthobicupola. The MoSz structure has a 
cluster consisting of three molybdenum atoms and 
two sulfur atoms combined in a trigonal bipyramid 
(ZP no. 12). This five-atom cluster has in its first 
coordination sphere 18 sulfur atoms distributed at 
the vertices of the polyhedron mentioned. The dis- 
tances from the center of the cluster to the vertices 
of the hexagonal-prismatic fragment are 3.49 A. The 
other six sulfur atoms are 5.00 A apart from the 
cluster of the cluster. 

Two more ZP's will be considered below. These 
are taken from the Gd2S2 structure (Prewitt & Sleight, 
1968) containing two correlated complexes (Fig. 16). 
The center of the first complex is occupied by the 
Gd(1) atom. The first coordination sphere has eight 
sulfur atoms at the vertices of a biaugmented 
triangular prism (ZP no. 50, Fig. l j )  or a 4,4-bicapped 
trigonal prism (4,4-BTP). The distances from the cen- 
ter of the complex to sulfur atoms are 2.75-3.06/~. 
The second coordination sphere is a trigonal 
bipyramid (ZP no. 12) with five gadolinium atoms at 
the vertices (the distances from the center of the 
complex are 4.89-4.93/~).  The third coordination 
sphere is a trigonal prism with Gd(2) atoms at the 

(a) (b) 

Fig. 15. The polyhedral structure of complexes in M o S  2 crystals. 
The center is occupied by cluster (a) with three Mo atoms (black 
circles) and two S atoms; (b) the sulfur atoms are at the vertices. 

vertices; this is a dual polyhedron with respect to 
the previous CP. The distances from the center of the 
complex to the atoms in the third coordination sphere 
are 5.36/~ x 6. 

In the second type of complex the seven sulfur 
atoms form an augmented triangular prism (ZP no. 
49, Fig. l i, d.a. 3°), which is known in crystal 
chemistry as a four-capped trigonal prism (4-CTP). 
The distances from the center of the complex to sulfur 
atoms are 2 .75-2 .92A.  The second coordination 
sphere contains 13 gadolinium atoms which are 4.89- 
5.56/~ from the center. These atoms form some 
original combination of  a cuboctahedron and an anti- 
cuboctahedron. As is well known, the cuboctahedron 
differs from the anticuboctahedron by a 60 ° rotation 
of a triangular face around a threefold axis. The 
polyhedron in the outer sphere of the second complex 
in the Gd2S3 structure has two vertices of these 
triangles which belong to both cuboctahedron (the 
black circles in Fig. 16f) and an anticuboctahedron 
(the arrowed circles in Fig. 16f). Such a polyhedron 
has edges of different length and, hence, it does not 
belong to PRS, ASRS or ZP. The two correlated 
complexes in the Gd2S3 structure yield together a 
minimal set of atoms which generates a translational 
symmetry. 

The TII structure provides the second example of 
a polyhedron which does not belong to PRS, ASRS 
or ZP. The thallium and iodine atoms have identical 
CP's, so let us take for a choice the complex with a 
thallium atom at the center (Fig. 17) and seven iodine 
atoms (ZP no. 49, Fig. l i )  in the first coordination 
sphere. The TI-I distances are 3.35-3.86/~. The poly- 
hedron in the second coordination sphere is a com- 
bination (Fig. 17b) of half of a cuboctahedron 
with half of an eight-vertex dodecahedron which is 

(a) (b) (c) 

(d) (e) (f) 

Fig. 16. The polyhedral structure of complexes in Gd2S 3 crystals. 
The first complex has a Gd(1) atom at the center; the atoms at 
the vertices are (a) S; (b) Gd; (c) Gd. The second complex has 
a Gd(2) atom at the center; the atoms at the vertices are: (d) S 
(the quadrilateral faces are slightly bent along the diagonals); 
(e) Gd. (f) The same polyhedron as at (e), but in the other 
aspect. 
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Table 1. The deviations of the ZP vertices from a sphere and numbers of vertices equidistant from the centers 
of polyhedra 

Number of vertices equidistant from 
the centers of polyhedra 
(for groups of vertices) 

Zalgal ler ' s  n u m b e r  and  name  of  po lyhedron  A ( %  ) First Second Third  

10. Gyroelongated square pyramid 22.93 4 5 
12. Trigonal bipyramid 34.31 3 2 
14. Elongated triangular bipyramid 53.14 6 2 
15. Elongated square bipyramid 32.90 8 2 
! 7. Gyroelongated square bipyramid 31.27 8 2 
26. Gyrobifastigium 34.31 4 4 
27. Triangular orthobicupola 0 12 
35. Elongated triangular orthobicupola 25.00 12 6 
49. Augmented triangular prism 17.76 4 3 
50. Biaugmented triangular prism 26.37 6 2 
51. Triaugmented triangular prism 26.37 6 3 
63. Tridiminished icosahedron 0 9 
84. Snub disphenoid 31.53 4 4 
85. Snub square antiprism 22.52 8 8 
86. Sphenocorona 18.90 4 2 4 
89. Hebesphenomegacorona 23.65 4 6 4 

distorted in such a way that the vertices with five 
converging edges form a square. This square is a 
common part of the two parts of the polyhedron 
mentioned. The distances from the center of the com- 
plex to thallium atoms in the second sphere are 4.53- 
4.57 ~ for four vertices of a cuboctahedron, 5.05 ~ x 
4 for four vertices common to two pieces of the CP, 
and 5.24/~ for the vertices of a distorted eight-vertex 
dodecahedron. 

One can say, in conclusion, that the inorganic crys- 
tal structures consist of regular or distorted PRS's, 
ASRS's and ZP's, as a rule. The other types of CP 
are rare, such as, for instance, the two polyhedra 
discovered above, which are in fact combinations of 
ASRS's and ZP's. 

ZP's with a large number of vertices have not been 
found in crystal structures, but ZP's with a number 
of vertices in the range 5-10 are widespread. The 
following ZP's were found in crystal structures: 
both 5-vertex polyhedra, all 8-vertex polyhedra, two 
7-vertex polyhedra of the three known ones, three 
9-vertex polyhedra of the four known, and three 10- 

I ! 

(a) (b) 

Fig. 17. The po lyhedra l  s t ructure of  complexes  in Tll crystals. The 
center  is occup ied  by a Ti a tom.  The a toms at the vertices are 
(a )  I, (b) TI. 

vertex polyhedra of the five known. There are ZP's 
which each include four different 11-, 12-, 14-, 16- 
and 18-vertex polyhedra, but only one representative 
of each of four such polyhedra have so far been 
recorded in crystal structures. ZP's with numbers of 
vertices of 20 and more have not yet been found. 

As shown above, many ZP's cannot be inscribed 
into a sphere. The deviation of the vertices of a ZP 
from a sphere (the asphericity) is worth estimating. 
As a measure of ZP asphericity the following formula 
was used: 

rma x --  rmi n 
A = × 100%, 

( r m a × d - r m i n ) / 2  

where rmax, rmi n are maximal and minimal distances 
from the polyhedron vertices to a point O respec- 
tively; the point O satisfies the condition that the 
difference (rmax-train) is minimal. Table 1 shows A 
values for some ZP's and numbers of vertices equally 
remote from the point (9, starting with the vertices 
nearest to the point O. 

Table 1 supports the conclusion that ZP's with 
solely triangular faces- trigonal bipyramid (CN 5), 
eight-vertex dodecahedron (CN 8), 4,4,4-TTP 
(CN 9) - are the most widespread polyhedra in spite 
of their significant asphericities. A polyhedron with 
triangular faces has longest edges among polyhedra 
with identical number of vertices. Such a result sup- 
ports an assertion about the strong influence ofligand 
repulsion over crystal structures. 

The formation of different CP's is usually explained 
by distinctions between the potentials of the atomic 
interactions. But as was made clear, there are stable 
CP's in spite of rather general conditions for the 
potentials of the atomic interactions. These polyhedra 
are the tetrahedron, trigonal bipyramid, octahedron 
and cube (the appearance of the cube is prompted 
by the fact that the model under consideration does 
not take into account the possibility of the consistent 
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displacement of the atomic group), and only these. 
Tetrahedra and octahedra fill space without empti- 
ness generating f.c.c or h.c.p, of atoms (ions) in crys- 
tals of inorganic substances. Presumably close pack- 
ing of atoms is widespread in crystals because it does 
not depend on the potential of the atomic interactions. 
A proof of the stability of the four polyhedra 
mentioned above at any potential of the atomic inter- 
actions is given in the Appendix. For the cube the 
consistent displacerrient of atomic groups converts a 
cube into another polyhedron, for instance a 
tetragonal antiprism. The potential energy of the latter 
is lower than the potential energy of the former 
(Kepert, 1982), so the cube is not so important as the 
tetrahedron or octahedron. 

The authors are grateful to Dr R. V. Galliulin for 
fruitful discussions of the subject. 

A P P E N D I X  

We consider the following model of interaction of 
atoms forming a coordination polyhedron around 
some central atom. Let these atoms be placed in the 
vertices of a convex polyhedron inscribed into a 
sphere of fixed radius r, so that the action of each 
vertex on its neighbors is defined by a potential f(p),  
where p is the length of the edge connecting these 
vertices. Let the following conditions always be 
satisfied: f ' ( p )  < O,f"(p) > 0 (i.e. the force ofrepulsion 
increases when the points draw together). Call the 
polyhedron f stable if every vertex of it is at a stable 
equilibrium position in the field of force defined by 
the actions of all its neighbors, i.e. by the action 
determined by the given potential f = f ( p ) .  

Theorem 
The following and only the following convex poly- 

hedra are f stable for every atomic interaction poten- 
tial (a.i.p.) f satisfying the aforesaid conditions: (1) 
a tetrahedron; (2) an octahedron; (3) a cube; (4) a 
trigonal bipyramid inscribed into a sphere. 

Let M hereafter be a convex polyhedron inscribed 
into a sphere of radius r, V(M) be the set of its 
vertices, p(A, B) denote the distance between points 
A and B, a(M) = a be the length of the shortest edge 
of polyhedron M, and s(M) denote the family of 
edges of M having length equal to a and the vertices 
incident to these edges. 

The following statements may be easily verified: 

Lemma 1 
Let A~ ~ V(M). If all the edges incident to A~ lie 

in a single half-space then the whole polyhedron M 
lies in the same half-space. 

Lemma 2 
If A, B ~ V(M) and A # B then there exists a vertex 

A c V(M) such that it is connected to A by an edge 
and p(A', B) < p(A, B) (possibly A ' =  B). 

Lemrna 3 
If A, B ~ V( M) then p(A, B) >- a, the equality hold- 

ing only if A and B are connected by an edge. 

Now let U(X) be the potential produced by the 
vertices of M which are connected to a vertex A. Let 
U(X) = Uo(X)+ U~(X), where Uo(X) is the poten- 
tial produced by vertices belonging to s(M) and 
U~(X) is the potential produced by the other con- 
nected vertices. Choose a rectangular Euclidean coor- 
dinate system such that its origin coincides with the 
center of the sphere, the Oz axis passes through vertex 
A and some of the vertices belonging to s(M) and 
connected to A lie in the Oxz plane. Then the coordin- 
ates of any point X on the sphere in the neighborhood 
of A are (x,y,[r2-x2-y2]~/2), so that U ( X ) =  
U(x, y) and the linear forms d Uo, d U~ and quadratic 
forms d 2 Uo, d 2 U, of dx, dy with x = y -- 0 are defined. 

Lemma 4 
If vertex A is stable for any a.i.p, then d Uo = d U~ = 

0 and d2Uo is non-negative for any a.i.p. Conversely, 
if dUo = d U ~ = 0  and the dUo and d U~ forms are 
non-negatively defined, at least one of them being 
positively defined, then A is a stable vertex. 

Proof 
For any a.i.p, f ( p )  and arbitrary e > 0  one can 

choose the a.i.p, f (p)  such that f '(p) and f" (p)  are 
negligibly small compared with f '(a) and f ' (a),  
respectively, in the interval [ a + e ,  +oo] but f (p )= 
f(p)  in the interval [ a -  e, a + e]. This results in the 
first statement. The second statement follows from 
well-known theorems of mathematical analysis. 

Lemma 5 
If polyhedron M is stable for any a.i.p, then 

a(M) >- 2r/x/3. If there exists a vertex of s(M) con- 
nected to exactly two vertices of s(M) then a(M) = 
r~/2. 

Proof 
Let (x, Yi, za) be the coordinates of the vertices Ai, 

i = 1 , . . . ,  n, belonging to s(M) connected to vertex 
A. It is clear that za = (2r 2 -  a2)/2r. Then lemma 4 
implies that ~ x~ =Y y~ = 0. The simple calculation 
shows that the matrix of d2U0 has the following 
expansion: dUo=[f'(a)/a2]G +[f'(a)/a]P2, where 

\ E  xiyi E y2 ] 

p2=[Y (z~/r-x2i/a2) - y  (xiYi/a 2) 
\ -~, (xiyi/a 2) ~, (za/r-y2/a2)]" 

So far as f ' ( a ) > O ,  f ' ( a ) < O  and the ratio 
[f'(a)l/lf'(a)l can be arbitrary, it is necessary that 
matrix P2 be non-positively defined. Considering the 
cases n = 2 and n > 2 separately one can deduce the 
statements of the lemma required. 
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Lemma 6 
If vertex A is incident to exactly three edges belong- 

ing to s(M) and A is stable for any a.i.p., then 
a >-2r/x/3 and these edges form equal angles. Con- 
versely, if vertex A is incident only to the edges having 
length a = a( M) >- 2r/x/3, their number being equal 
to three and the angles formed by these edges being 
equal to each other, then A is stable for every a.i.p. 

Proof 
Let A be stable for any a.i.p. Then d Uo = 0 results 

in the equality of angles and a >- 2r/x/3 by lemma 5. 
Conversely, let the conditions stated in the lemma be 
satisfied. Then one can write xi =ra cos 27r( i -1) /3 ,  
yi = ra sin 27r(i - 1)/3, i = 1, 2, 3, ra = (r 2 - z2,) '/2 (see 
the proof of lemma 5). Then a direct calculation shows 
that d U = dUo = 0, P~ is positively defined, /'2 is a 
non-positively defined matrix, which implies that 
d2U = d2U0 is a positively defined quadratic form. 

Lemma 7 
If there exists a vertex of M incident to exactly 

two edges belonging to s(M) and M is stable for any 
a.i.p., then M is an inscribed trigonal bipyramid. 
Conversely, an inscribed trigonal bipyramid is stable 
for any a.i.p. 

Proof 
By virtue of lemma 5 one has a = r~/2. Denote by 

A1 and A2 two vertices connected to vertex A satisfy- 
ing the condition of the lemma. Then A~ and A2 have 
coordinates (r, 0) and ( - r ,  0) respectively. By virtue 
of lemma 3 every vertex of M which is distinct from 
A~ and A2 lies in the x = 0 plane. Evidently, not more 
than three such vertices can lie in this plane, otherwise 
either the distance between a pair of them is greater 
than a, or A is incident to four edges of length a, 
which is a contradiction. The equality d Uo = 0 applied 
to the vertex A (or A2) implies that these three vertices 
in the x = 0 plane form a regular triangle. The con- 
verse statement follows from lemma 6 (for the 'poles') 
and from the calculation carried out in the proof of 
lemma 5 (for 'equatorial vertices'). 

Lemma 8 
If a polyhedron M is stable for any a.i.p, then every 

vertex of M is incident to not more than four edges 
of length a. 

Proof 
It is clear that if vertex A is connected to five 

vertices by edges of length a, then these vertices lie 
2)1/2 < ax/(2/3), so on a circle of radius r~ = (r 2 -  z,, - 

that at least one of the distances between these 
vertices is less than or equal to 2r~ s in (Tr /5 ) -  < 
ax/(2/3) sin (rr/5) < 0-96a < a which is impossible. 

Lemma 9 
If a polyhedron M is stable for any a.i.p, and there 

exists a vertex of M incident to four edges belonging 

to s(M) then M is an octahedron. Conversely, an 
octahedron is stable for any a.i.p. 

Proof 
The second statement follows from lemma 5, since 

a = r~/2> 2r/~/3 for an octahedron. Suppose M is 
stable for any a.i.p, and vertex A is connected to 
vertices A,,  A2, A3, A4 by edges belonging to s(M). 
Then, obviously, the distances between these vertices 
are greater than or equal to a, so a-< r~/2. Suppose 
a <  r~/2 and the angle between OAA1 and OAA2 
planes is less than or equal to 90 ° . Consider two cases: 

(1) Each of the vertices A~ and A2 is incident to 
four edges belonging to s(M). One can see from 
lemma 5 applied to the vertex A1 that one of these 
edges lies in the OAA~ plane and does not coincide 
with edge A,A. Let B~ be the end of this edge. 
Similarly, let B2 denote the end of the edge of length 
a which lies on the OAA2 plane, starts from A2 and 
is distinct from A2A. The calculation shows that 0 < 
p(B,, B2)< 2a~/6/9-0.554a,  which is impossible in 
view of lemma 3. 

(2) Vertex A~ is incident to three edges. Let C be 
the end of one of them which lies on the same side 
of the OAA, plane as the vertex A2. Then one easily 
calculates that 0 < p(A2, C)< a, which is impossible 
as well. 

So one has a = r~/2, and AI, A2, A3, A4 are the 
vertices of a square lying in the z = 0 plane. Five 
vertices A, A~, A2, A3, A4 uniquely define the sixth 
vertex of an octahedron. 

Proof of the theorem 
The stability of listed polyhedra follows from 

lemma 6 (a cube with a = 2r/~/3 and a tetrahedron 
with a>2r/.,/3), lemma 7 (an inscribed trigonal 
bipyramid) and lemma 9 (an octahedron). Con- 
versely, let M be a polyhedron which is stable for 
any a.i.p. In virtue oflemmas 7 and 9 one can suppose 
that every vertex (say A) of s(M) is connected to 
three vertices (say A,, A2, A3) by the edges of length 
a. Let the vertices A~, A2 and C be chosen in the 
same way as in the proof of case 2 of lemma 9. Then 
either C = A2 which results in a tetrahedron, or 
p(A2, C)= a and a =2r/x/3, i.e. M is a cube. The 
theorem is proved. 
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Abstract 
The idea of structural ensembles is introduced in the 
framework of the crystal-chemical model of atomic 
interactions (CCMAI). The atomic ensemble is 
treated as a minimal portion of atoms, which pre- 
determines the crystal structure. Inorganic crystal 
structures such as graphite, white tin, PbO are con- 
sidered. It is supposed that both atoms and localized 
electron pairs form these structures. On the basis of 
CCMAI the hypothetical structure of icosahedral 
quasicrystals is worked out. In accordance with this 
hypothesis the initial cluster (or simply cluster) of 
the quasicrystal has a double-shell structure and each 
shell has an icosahedral form; the thickness of a shell 
is equal to the diameter of one atom; the number of 
atoms in one shell is 10n2+2, where n is the number 
of the shell. The quasicrystal has two subsystems 
of atoms. One of them consists of the central 
atoms of clusters and the atoms included in the first 
shells of clusters. The 13-atom icosahedral bodies 
form a crystal lattice with space group Fd3. All 
icosahedra of this atomic subsystem have a perfect 
form and all of them are perfectly oriented with 
respective to each other. The first atomic subsystem 
is responsible for the diffraction of electrons and 
X-rays. The second atomic subsystem includes atoms 
of the second shells of clusters. This subsystem has 
no translational symmetry, but it is partially ordered. 

Introduction 
In the previous papers in this series (Aslanov, 
1988a, b; Aslanov & Markov, 1989) the crystal struc- 
tures were considered as sets of coordination poly- 
hedra. The atoms were assumed to be attracted to 
each other by different sorts of chemical bondings 
and mutually repelled by atomic electron shells. 

Any theoretical model must have some prognostic 
ability. The discussion of the prognostic ability of 
CCMAI is the main purpose of this paper. 
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For the explanation of some crystal structures the 
widely known model of valence-shell electron-pair 
repulsion (VSEPR) is necessary (Gillespie, 1972). 
This model is intended for molecular structures with 
covalent bonds. Gillespie (1972) pointed out that the 
structures of ionic crystals are wholly defined by 
the packing of charged spheres, where the relative 
dimensions and charges of ions play the main role. 
On this assumption one can form the conclusion that 
the VSEPR model is not applicable to metallic struc- 
tures and to crystals with van der Waals atomic inter- 
actions. CCMAI allows one to demonstrate the effect 
of electron pairs on crystal structures with ionic and 
metallic bonding. The crystal data considered below 
were taken from the book by Wyckoff (1964). Another 
topic of this paper is quasicrystals, a very delicate 
problem of advanced crystallography. 

Crystals 
First it is worth introducing the concept of structural 
ensemble into the crystal-chemical model of atomic 
interactions (CCMAI). The concept summarizes pre- 
vious ideas (Aslanov, 1988a, b; Aslanov & Markov, 
1989). A structural ensemble is a minimal set of atoms 
(i) consisting of the central atom (cluster) and its 
coordination spheres, (ii) having a minimum of 
potential energy of atomic interactions (iii) at the 
peripheral coordination sphere possessing the atoms 
(clusters) of the same sort as in the center, (iv) cross- 
ing similar ensembles in such a way that the common 
part of the pair of crossing ensembles consists of at 
least three atoms; these atoms do not lie in a straight 
line. 

The first step of crystal-chemical analysis with 
CCMAI involves the isolation of Platonic regular 
solids (PRS), Archimedian semiregular solids 
(ASRS) or Zalgaller's polyhedra (ZP) which are the 
fragments of the structural ensemble. Of course the 
distance from the center of the structural ensemble 
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